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Steady and oscillatory bimodal convection 
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Steady three-dimensional convection in the form of bimodal cells in a fluid layer heated 
from below with rigid boundaries is studied through numerical computations for 
Prandtl numbers in the range 10 5 P 5 100. The stability of the steady solutions with 
respect to disturbances of various symmetries has been analysed. Typically, the range 
of stable steady bimodal convection is restricted by the transition to oscillatory 
bimodal convection. The oscillations preserve the spatial symmetry of the steady 
bimodal convection pattern in the case of high P and higher wavenumbers, but break 
it in the case of lower P or lower wavenumbers in the range that has been investigated. 
Some comparisons are made with experimental observations. The transition from 
bimodal to knot convection has also been studied. 

1. Introduction 
The subject of the transition to time dependence in the thermal convection of a high- 

Prandtl-number fluid has long been a controversial one. Because the inertial terms in 
the equations of motion become unimportant for sufficiently high Prandtl numbers, the 
time derivative and advection term in the heat equation become the only source of time 
dependence and nonlinearity, respectively, in the basic equations of the problem. 
Laboratory experiments and numerical simulations of two-dimensional (Hansen & 
Ebel 1988) and three-dimensional convection (Houseman 1988) have demonstrated, 
however, that the reduced number of degrees of freedom for oscillatory modes is still 
sufficient to permit the transition to time-dependent convection in a fluid of very large 
or infinite Prandtl number P. The laboratory evidence is somewhat ambiguous. In her 
experiments with fluids of different Prandtl numbers Krishnamurti (1970) finds that the 
Rayleigh number R,,, for the onset of time dependence in thermal convection becomes 
essentially independent of P once P exceeds a value of about 50. This value of R,,, was 
determined by Krishnamurti to be about 5.3 x lo4. On the other hand, Busse & 
Whitehead (1974, referred to as BW74 in the following), and Whitehead & Parsons 
(1978) observed steady bimodal convection at Rayleigh numbers far about this value. 
The steady convection cells in these experiments were realized, however, through the 
use of two-dimensional rolls as initial conditions at low Rayleigh numbers. In the 
experiments of Whitehead & Parsons with controlled initial conditions it was possible 
to observe steady bimodal convection in a fluid with P = 8600 up to Rayleigh numbers 
of the order 8 x lo5. 

In experiments starting from uncontrolled initial conditions it is difficult to realize 
the spatially periodic bimodal cells that were achieved in good approximation in the 
work of BW74, Busse & Whitehead (1971), and Whitehead & Parsons (1978). The 
basin of attraction of the spatially periodic solutions is rather small in the large-aspect- 
ratio layers used in the experiments and a random pattern of convection cells is 
typically found if no special initial conditions are used. Whitehead & Parsons 
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investigated the question of the onset of oscillations in the random pattern and found 
that the number of cells exhibiting oscillations increases from a small fraction at a 
Rayleigh number of the order lo5 to a majority of the cells at a Rayleigh number of 
8 x lo5 for P = 8600. Whitehead & Chan (1976) did similar measurements at lower 
Prandtl numbers. Clearly the onset of oscillatory time dependence in convection of 
high-Prandtl-number fluids is not well defined and isolated oscillations will occur first 
in special locations where strong distortions from the average pattern of bimodal 
convection cells occur. 

In the present paper the dependence of the onset of oscillatory instability of steady 
bimodal convection on the Prandtl number and on the wavenumbers of the bimodal 
cells is analysed. It will be demonstrated that the latter dependence is rather strong, 
which emphasizes the point that variations in the size of the cells may easily give rise 
to the onset of local oscillations. 

The mathematical formulation of the problem in $2 is kept short since the analysis 
follows earlier work by the authors on three-dimensional convection. In $3 the 
properties of three-dimensional convection are discussed and compared with those of 
two-dimensional rolls. The stability of bimodal convection is analysed in $4 and the 
evolution of the two kinds of oscillatory instability is followed to finite amplitudes in 
95 .  The transition from bimodal convection to knot convection is of particular interest 
since it involves a change in the wavelength of the pattern. In $6 a few examples of this 
transition are discussed. The paper closes with some concluding remarks in $7. 

2. Mathematical formulation of the problem 
We consider a horizontal fluid layer of thickness d with no-slip upper and lower 

boundaries that are kept at constant temperatures and T,, respectively. Using d as 
lengthscale, d 2 / K  as timescale where K is the thermal diffusivity, and (T,  - TJ/R as 
temperature scale we can cast the basic equations in dimensionless form. Since we 
assume the Boussinesq approximation the velocity field is solenoidal and the following 
general representation can be employed : 

v = V x (V x k$) +V x k$ 84 + E $ ,  (2.1) 

where the unit vector k is directed opposite to gravity and parallel to the z-axis of a 
Cartesian system of coordinates. By taking the z-components of the (curl)2 and the curl 
of the equations of motion we obtain the following equations for 4 and $: 

V4Az $ - A, 0 = P-' 6 .  [(a$ + E$) . V(64 + E$)] + ( 2 . 2 ~ )  

(2.2b) 

where Az denotes the horizontal Laplacian, A2 = a2/ax2 + a2/ayz. The heat equation for 
the deviation 0 of the temperature from the solution of the static state is given by 

a 
at 

V20- RA2 4 = (84 + E $ )  * V0+-0. 

The Rayleigh and Prandtl numbers obey their usual definitions 

(2.2 c) 

V K  K' 
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FIGURE 1. Nusselt number Nu as a function of the Rayleigh number R for two-dimensional 
convection (thin lines) and bifurcating bimodal cells (thick lines). The cases P = 16 with a, = 2.5 
(dash-dotted), a, = 2.0 (dash-double dotted), a, = 3.117 (dash-triple dotted); P = 30 with a, = 2.5 
(dashed); P = 60 with a, = 2.5 (solid); and P = 100 with cc, = 3.117 (dotted) have been plotted. 
a, = 4.5 was used for all bimodal solutions. 

where y is the thermal expansivity, g is the acceleration due to gravity and v is the 
kinematic viscosity. The boundary conditions are given by 

a 
aZ 

$ = - - $ = + = S = O  at z = * &  

As in previous work on steady bimodal convection at infinite Prandtl number (Frick, 
Busse & Clever 1983) we use the Galerkin method for the solution of the problem 
described by equations (2.2) and conditions (2.3). Accordingly the dependent variables 
are expanded in complete series of functions satisfying the boundary conditions 

$ = C (a,mn(t) cos la, x + &,,,(t) sin la, X) cos (ma, y) g,(z), (2.4 a)  

$ = (C"zm~(t)s~nh,x+c',m,(t)cosla,x)sin(ma,y)sinnrc(z+~), (2.4b) 

8 = (6,,,,(t)cos1a,x+6,,,(r>sinZa,x)cos(ma,y)sinnrc(z+~), ( 2 . 4 ~ )  

where g,(z) are the Chandrasekhar functions used by Frick et al. (1983) and by Clever 
& Busse (1989). The expansion of the x, y-dependence has been written in the most 
general form that will be used in the following analysis. For steady bimodal convection 
a much simpler subset of the representation (2.4) can be used in that 

l , m , n  

I ,  m, n 

1 ,  m ,  n 

iLmn = bzmn = tzmn = 0 for all Z,m,n ( 2 . 5 ~ )  

can be assumed because bimodal cells are characterized by two orthogonal sets of 
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vertical symmetry planes that can be placed at x = Inla, and y = m7c/ay for all integers 
1, m. In addition the symmetry property 

dLmn = blmn = tlmn = 0 for I+m+n = odd (2.5 b) 

is satisfied for steady bimodal convection (Frick et a/. 1983). The equations for the 
coefficients Cizmn,  blmn, etc. are generated when (2.2) are multiplied by the expansion 
functions and averaged over the fluid layer after the expansions (2.4) have been inserted 
for the dependent variables. In the case of steady solutions the resulting nonlinear 
algebraic equations for the time-independent coefficients can be solved by a 
Newton-Raphson iteration method once the system of equations has been truncated. 
We shall neglect for this purpose all coefficients and corresponding equations satisfying 

I+m+n > NT,  (2.6) 
where N ,  is an integer of the order 10 which can be varied. When sensitive quantities 
such as the Nusselt number change by less than about 1 YO after NT has been replaced 
by NT, - 2 the approximation is regarded satisfactory. In the case of time-dependent 
coefficients dlmn, iZmn etc. the algebraic equations are replaced by ordinary first-order 
differential equations in time. After employing a truncation condition of the form (2.6) 
we solve the system of equations numerically with the Crank-Nicolson integration 
scheme. Because of the higher computational expense for time-dependent solutions a 
slightly less restrictive truncation criterion than for the steady solutions is usually 
applied. 

The stability of the steady bimodal convection flow can be analysed through the 
imposition of infinitesimal disturbances of the following general form : 

6 = C Glmn exp {i(la, + d)  x + i(ma, + b) y + crt] gn(z),  ( 2 . 7 ~ )  

4 = i c tLmnexp{i(la,+d)x+i(ma,+b)y+nt}sinn.n(z+i), (2.7b) 

6 = C. &,, exp {i(lol, + d)  x + i(ma, + b) y + ( ~ t }  sin nn(z + i). (2.7 c) 

For a given steady solution characterized by the parameters R, P, a, and a, the 
equations for the disturbances 6, &, 6 represent an eigenvalue problem with the growth 
rate (T as eigenvalue. When the maximum of the real part of (T as a function of d and 
b exceeds zero, the steady solution becomes unstable. Since the summation in (2.7) runs 
through negative as well as positive integers I and m, the general eigenvalue problem 
involves about four times as many equations as the problem for the steady solution 
after the truncation condition (2.6) has been imposed for 111 and Irnl instead of 1 and m. 
Fortunately, the strongest growing disturbances often correspond to d = b = 0, in 
which case reductions in the size of the stability matrix become possible as will be 
discussed in 94. 

l , m , n  

l , m , n  

L m , n  

3. Properties of steady bimodal convection 
It is well known that the transition from rolls to bimodal convection arises from the 

instability of the thermal boundary layers at the rigid upper and lower boundaries of 
the fluid layer (Busse 1967). The additional small-wavelength convection roll that 
develops at a right angle to the basic roll is particularly suited to take advantage of the 
buoyancy stored in the thermal boundary layers. In conjunction with the release of 
buoyancy the heat transport is increased as shown for a variety of cases in figure 1. This 
figure clearly shows the striking increase of the Nusselt number due to the onset of 
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FIGURE 2. The kinetic energy E$ for the poloidal component of motion as a function of R for the 
same cases as in figure 1 .  

bimodal convection. Without this onset the Nusselt number would asymptotically 
follow the &-law that has been predicted for two-dimensional rolls (Roberts 1979). 
While the heat transport of two-dimensional convection depends strongly on the 
wavenumber ay of the primary rolls and only slightly on the Prandtl number, the 
wavenumber dependence is reduced after the onset of bimodal convection in that the 
second roll component tends to compensate somewhat for the deficiency of the primary 
roll component. On the other hand a more substantial Prandtl-number dependence 
seems to develop in that the contribution of the secondary roll component is especially 
strong at higher Prandtl numbers. 

The poloidal and toroidal kinetic energies of motion are defined by 

(3.1) 
where the angular brackets indicate the average over the fluid layer. Their dependences 
on the Rayleigh number are shown in figures 2 and 3 for the same parameters as in 
figure 1. The poloidal kinetic energy E4 exhibits a dependence similar to that of the 
Nusselt number while the toroidal energy E$ vanishes for the two-dimensional rolls 
and remains relatively small for bimodal convection. As expected, E4 decreases with 
increasing Prandtl number, but the dependence on ay is even more pronounced in that 
long wavelengths promote the generation of vertical vorticity in bimodal convection. 
The choice of the wavenumbers a, has been motivated in part by the preferred values 
determined in the stability analysis of Busse (1967) and Bolton, Busse & Clever (1986). 

The structure of velocity and temperature fields of steady bimodal convection appear 
to change little with Prandtl number. The variation with Rayleigh number is much 
stronger as is evident from figure 4 where cases with R = 2.8 x lo4 and lo5 are 
compared. While the structure of the basic roll is still quite apparent at the lower 
Rayleigh number, a rectangular cell is evident at R z lo5. For plots of isotherms in the 
vertical planes we refer to the computations of Frick et al. (1983) of bimodal 

E 4 = 1  - 2 (IV x (V x k$)I2), E$ = ;(lv x k$I2), 
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FIGURE 3. The kinetic energy E+ for the toroidal component of motion in bimodal cells for the 
same cases as in figure 1 .  

, ,--. \ 

FIGURE 4. Lines of constant vertical velocity in the planes z = 0 (a, c)  and z = - 0.4 (e, g), isotherms 
in the planes z = 0 (b) and z = -0.4 (A h) and lines of constant y? in the plane z = 0 (d ) .  The left 
(right) half of the figure correspond to the parameter values P = 100 (60), R = 2.8 x lo4 (1 x lo5) with 
a, = 4.5, ay = 2.5 in all cases. Solid (dashed) lines indicate positive (negative) values except for the 
solid line adjacent the dashed lines whjcih--iudiicahxzPtn 



Steady and oscillatory bimodal convection 109 

convection at infinite Prandtl numbers. It should be noted that the missing parameter 
values in the caption of figure 3 in that paper are given by a1 = 3 . 1 1 7 , ~ ~  = 5.0 and R = 
3 x lo4. It is clear from the smaller values of E,,+ that the qualitative difference of the 
solutions at infinite and at finite Prandtl numbers arising from the presence of vertical 
vorticity in the latter case does not cause a significant change in the gross structures of 
the solutions. 

4. Transition to oscillatory bimodal convection 
The stability of steady bimodal convection has been analysed with respect to 

disturbances which fit the horizontal periodicity interval defined by a,, ay. These 
disturbances usually appear to be the most dangerous ones according to the 
experimental evidence of BW74. Because of the symmetry properties (2.5) the 
disturbances of the form (2.7) with b = d = 0 can be separated into different subsets 
depending on whether they possess the same symmetry or the opposite one as the 
steady solution. Accordingly we may separate the disturbances into two sets with 
respect to the x-dependence, 

( C )  with Zlmn = Limn and ( S )  with Glmn = (4.1) 

and an analogous - separation for the y-dependence. The same relationships hold for the 
coefficient blmn and ZLmn. In addition we separate the disturbances into sets for which 
the coefficients Zlmn, blmn, Zlmn vanish unless Z+m + n is even (denoted by E) and those 
for which coefficients vanish unless I+ m + n is odd (denoted by 0). We thus find eight 
subsets of disturbances : 

ECC, ECS, ESC, ECC, OCC, OCS, OSC, OSS. 

C(S)  as second or third letter indicates a cosine (sine) dependence of 4 with respect to 
the x- or the y-coordinate, respectively. 

The separation of the general stability matrix into the subsets (4.2) yields an 
enormous simplification of the eigenvalue problem for the determination of the growth 
rates c. The critical values R,,, of the Rayleigh number at which the maximum real 
part of c goes through zero have been listed in table 1 for typical steady bimodal 
solutions, together with the symmetry of the growing disturbances. It is evident from 
this table that for Prandtl numbers less than 60, disturbances with the OSC-symmetry 
are the critical ones while for larger Prandtl numbers disturbances with the ECC- 
symmetry also enter the competition. There is a significant dependence on the 
wavenumbers of the steady bimodal cells. Smaller bimodal cells, especially those with 
higher wavenumber az, appear to be much more stable than those with lesser values 
of a, which is in qualitative agreement with the results of figure 5 in BW74. 

The measured Rayleigh numbers for the onset of oscillatory instability appear to be 
too high by a factor of at least two when compared with the values listed in table 1. 
This discrepancy must be attributed in part to the effect of the finitely conducting 
boundaries of the experimental layer which also tends to shift the preferred 
wavenumbers towards lower values (Busse & Whitehead 1971). Another cause for the 
discrepancy arises from the transient nature of the experiments. Instabilities are 
observed only when they grow sufficiently fast, which happens usually only at a 
considerable distance beyond the computed stability boundary. 

(4.2) 
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Nu 2 

1 

Time (x lo3) 

FIGURE 5. Variation in time t of Nusselt number Nu (solid line, left ordinate), poloidal kinetic energy 
E6 (dashed, right ordinate) and toroidal kinetic energy Ek (dotted, right ordinate) of wavy oscillatory 
bimodal convection for the case P = 16, R = 7 x lo4, a, = 4.5, u, = 2.5. 

P uz/ R,,, x 10-3 rt Symmetry 
16 4.5 2.0 38.8 89.1 osc 

4.5 2.5 35.6 106.1 osc 
4.5 3.117 59.7 167.5 osc 
5.4 2.5 83.6 152.9 osc 

30 4.5 2.5 55.1 125.1 osc 
4.5 3.117 69.3 174.4 osc 

60 3.6 2.0 39.7 92.2 osc 
4.5 2.0 74.7 184.3 ECC 
3.6 2.5 37.0 114.1 osc 
4.0 2.5 40.4 114.3 osc 
4.5 2.5 109.0 226.8 ECC 
5.4 2.5 > 250 
4.5 3.117 80.7 182.4 osc 
5.4 3.117 >250 

100 4.5 3.117 96.6 195.2 osc 
TABLE 1. Onset of oscillatory instability of bimodal convection 

5. Wavy and symmetric oscillatory bimodal convection 
In this section we describe results obtained for oscillatory bimodal convection at 

finite amplitudes of the oscillatory component. In contrast of the linear analysis of the 
preceding section based on the representation (2.7) we now use the method of forward 
integration in time of the equations for the time-dependent coefficients in the 
representation (2.4). The wavy oscillatory bimodal convection evolving from the OSC- 
disturbances usually causes much stronger deviations from the steady bimodal flow 
than the symmetric oscillatory bimodal convection evolving from the ECC- 
disturbances. In figure 5 the variation in time of integral properties such as the Nusselt 
number Nu and the kinetic energies E+ and E@ is shown. The latter energies are out of 
phase with the Nusselt number in that their maxima precede that of Nu by about 90". 
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FIGURE 6. Lines of constant vertical velocity in planes z = 0 (row a) and z = -0.4 (row b) and of 
isotherms in the plane z = -0.4 (row c)  at the times (left to right) t = 0, 5.5 x 11.0 x lo-’, 
16.5 x of figure 5,  such that each row of five pictures shows about one half-period of 
oscillations. Solid (dashed) lines indicate positive (negative) values; the short-dashed line indicates 
zero. Parameter values are the same as in figure 5. 

22 x 

The period of integral properties actually corresponds to one half-period of the pattern 
oscillations as is evident from the comparison with figures 6 8 .  The waving back and 
forth of the rising and descending sheets of the secondary rolls seen in figure 6 is typical 
for wavy oscillatory bimodal convection. This phenomenon is also clearly apparent in 
the isotherms of the vertical planes y = 0, y = x/2ay, and y = x/aY shown in figure 7. 
In figure 8 it is shown that the variation in the Nusselt number corresponds to the rise 
of hot fluid blobs towards the cold boundary and their subsequent dissipation there as 
seen in columns (a)  and ( d )  of the figure. The corresponding movement of cold blobs 
is seen in plane x = x/a, (column c) where the dashed isotherms form a mirror image 
of the solid isotherms in the plane x = 0. 

The period of integral properties of symmetric oscillatory bimodal convection is 
identical to the period exhibited by the local properties, in contrast to the case of wavy 
oscillatory bimodal convection. This result is a consequence of the fact that the spatial 
symmetry of the bimodal cells is not broken by the onset of symmetric oscillations. 
Figure 9 indicates a relative slight variation of Nu and Ed even though the critical 
Rayleigh number for the onset of oscillations has been exceeded by 28 YO. Note that Nu, 
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FIGURE 7. Isotherms in the planes y = 0 (column a), y = 7c/2aZ, (column b) and 
u = 7c/aZ, (column c )  for the same case as in figure 6. Time increases from top to bottom. 

E4 and E$ are varying nearly in phase. The variations of velocity and temperature fields 
throughout the cycle are shown in figures 10 and 11. They are best seen near the 
thermal boundary layers where regions of hot rising fluid and cold descending fluid, 
respectively, expand and contract in a periodic fashion. The computed features of both 
wavy and symmetric oscillatory bimodal convection agree well with the observations 
reported in BW74. Figures 2 and 7 of that paper show the waving back and forth of 
rising sheets of the secondary roll motion while the expansion and contraction of these 
sheets in the form of the symmetric oscillatory bimodal convection occurs in the case 
of a higher wavenumber a, as shown in figure 9 of that paper. Both types of oscillatory 
bimodal convection are associated with a higher time-averaged heat transport than is 
carried by steady bimodal cells for the same parameter values. As the Rayleigh number 
increases this difference tends to decrease and sometimes it reverses its sign, as 
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" " " " " " " " " ' " " " l  

FIGURE 9. Variation in time t of the Nusselt number Nu (solid line, left ordinate), E4 (dashed, left 
ordinate) and E$ (dotted, right ordinate) of symmetric oscillatory bimodal convection for the case 
P = 60, R = 14 x lo4, a, = 4.5, a, = 2.5. N ,  = 16 has been used as truncation. 

FIGURE 10. Lines of constant vertical velocity in the planes z = 0 (column a) and z = -0.4 (column 
b) and isotherms in the plane z = -0.4 (column c) of symmetric oscillatory bimodal convection for 
the case of figure 9 at the times (top to bottom) t = 4 x 12 x 20 x such that the picture 
at t = 28 x would be nearly the same as the first one. 

indicated in table 2. In this comparison it must be taken into account that a lower 
truncation parameter had to be used for wavy oscillatory solutions because of the high 
expense for the computations of time-dependent solutions with a broken symmetry. 
Although the variation of the Nusselt number with the truncation parameter N ,  is still 
larger than the difference between oscillatory and steady cases, the above statements 
are justified. The variation with N ,  is a systematic one and differences for a given value 
of N ,  tend to persist as N ,  is increased. 
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FIGURE 11. Isotherms in the planes x = 0 (a) and x = K / U ,  (b) for the same case as figure 10. 

Period 
p a, Uy R X  10-3 x 103 N ,  NU 

16 4.5 2.5 50 50.2 12 3.917 
70 43.3 12 4.333 

16 4.5 2.0 50 60.8 12 3.825 
70 51.2 12 4.161 

30 4.5 2.5 70 44.2 12 4.348 
100 37.0 12 4.767 

60 4.5 2.5 120 26.4 16 4.986 
140 24.4 16 5.187 

Nu for steady case 

N , =  12 N , =  14 N , =  16 

3.871 3.845 3.833 
4.257 4.214 4.191 
3.803 3.777 3.765 
4.164 4.119 4.096 
4.328 4.290 4.270 
4.768 4.705 4.671 
5.072 5.010 4.982 

5.172 - - 

TABLE 2. Selected time-averaged Nusselt numbers for oscillatory bimodal convection in 
comparison with values for steady solutions 

In figure 12 the periods of oscillatory bimodal convection have been plotted as a 
function of the Rayleigh number in order to offer a comparison with the corresponding 
figure 5 of BW74 in which experimental measurements have been plotted. Although 
theoretical predictions and experimental measurements overlap in a small Rayleigh- 
number range, the experimental data continue the line of figure 12 towards higher 
Rayleigh numbers. Both figures exhibit the general R-:-dependence proposed by 
Howard (1966) in his model of periodic eruptions of thermals from the thermal 
boundary layers. Experimentally the R-$-dependence was found by Rossby (1969). The 
property that the period of oscillations is independent of the Prandtl number indicates 
a connection with the circulation velocity of the basic roll, which also grows with nearly 
the Ri-power as shown in figure 2. Indeed, the oscillations may be regarded as a 
resonance phenomenon in which half a circulation period matches approximately the 
timescale for the growth and subsequent instability of the thermal boundary layers, 
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FIGURE 12. Periods of T of oscillatory bimodal convection as a function of R. Parameter values (P, 
ct,,cty)are x ,  16,4.5,2.0; 0, 16,4.5,2.5; +, 30,4.5,2.5; A, 16,5.4,2.5; 0, 60,4.5,2.5; 0, 16,4.5, 
3.117; v, 60,4.5,3.117; w, 100,4.5,3.117. For comparison some data points fromfigure 5 of BW74 
have also been plotted: 0, P = 63; V, P = 44. 

since two hot and cold blobs appear to move around the convection cell at any time. 
The role of the circulation velocity is also indicated by the fact that the roll velocity field 
depends much more on the wavenumber ay than on the Prandtl number as is evident 
from figure 2. Both experimental as well as theoretical results exhibit the expected 
property that the period of oscillation increases with decreasing aY. 

6. Transition from bimodal to knot convection 
Knot convection and bimodal convection exhibit a number of similarities. Both 

types of convection in their steady form share the symmetry properties (2.5) for the 
representation (2.4). Even in their oscillatory forms they are rather similar in that the 
emergence of hot and cold blobs from the hot and cold boundary layers, respectively, 
is the dominant mechanism for the transition from steady to oscillatory convection. 
The main difference is the property that for bimodal convection the secondary 
wavenumber cz, is significantly larger than the critical value a, while the opposite holds 
f9r knot convection. 

Bimodal convection is the preferred tertiary state of convection at high Prandtl 
numbers and knot convection assumes this role in the range 2 5 P 5 pt, where pt 
increases from about 10 at a Rayleigh number of the order 3 x lo4 to much higher 
values as R increases. The stability boundary at pt corresponds to the transition from 
knot convection to bimodal cells and vice versa. 

In order to analyse the instability of steady bimodal convection with respect to 
disturbances which cause a transition to knot convection, infinitesimal perturbations 
of the form (2.7) must be admitted which change the periodicity interval of bimodal 
cells. Since the wavenumbers CL, for bimodal and knot convection differ typically by a 
factor of three, we have found it convenient to replace the value a, in the 
representation (2.4) for bimodal convection by +a, such that only those coefficients almn 
for which 1 = 3p for p = 0,1,2,. . . are different from zero. Within this new enlarged 
representation, disturbances of the form (2.7) which increase the wavelength of 
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FIGURE 13. Stability boundaries as a function of R and P of steady bimodal convection with a, = 
5.4, a, = 2.5 (solid lines), and with a, = 4.5, aI = 2.5 (dashed lines) with respect to the transition to 
steady knot solutions with &, = +a, (0,O) and with respect to the transition to oscillatory knot 
convection with kZ = $az ( x  , +). 

bimodal cells in the x-direction by a factor of three can be accommodated still with 
vanishing values of d and b. Figure 13 shows some results of this stability analysis for 
two different periodicity intervals of the bimodal cells. As must be expected the 
transition to steady knot convection occurs at low Rayleigh numbers while at higher 
Rayleigh numbers an oscillatory instability is found which evolves into oscillatory knot 
convection. Obviously it is difficult to do computations in more than a few cases 
because of the high truncation required. But the results of figure 11 demonstrate a 
process which resembles closely the transition found in the laboratory experiments of 
BW74. A quantitative comparison cannot be easily carried out, however, because most 
of the observations have been done at higher Prandtl and Rayleigh numbers. 

7. Concluding remarks 
The thermal boundary layers at the top and bottom boundaries are the dominant 

nonlinear feature in the high-Rayleigh-number high-Prandtl-number convection. The 
instability of these layers causes both the transition from roll convection to bimodal 
cells and the emergence of blob instabilities. That the onset of the oscillatory instability 
is usually delayed when the Nusselt number is high can be seen from a comparison of 
the results shown in figure 1 and table 1. In the case of the highest heat transport, 
namely bimodal convection with ax = 5.4, a, = 3.117 in the case P = 60, an onset of 
oscillatory instability could not be found in the range of Rayleigh numbers that has 
been investigated. 

The onset of oscillations is not solely influenced by the thickness of the thermal 
boundary layers. Relatively low values of a, also seem to promote the onset of 
oscillations. Computations in the case P = 16, a, = 3.5, a, = 4.5 have given the result 
that the steady bimodal convection is always unstable to oscillatory instabilities. The 
sensitive dependence of the oscillatory instabilities on the wavenumbers of the bimodal 
cells is the reason for the very inhomogeneous onset of oscillations in experiments 
started without controlled initial conditions. As shown by Whitehead & Chan (1976) 
and Whitehead & Parsons (1978) the onset of time dependence of convection in high- 
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Prandtl-number fluids is spread out over a large Rayleigh-number range starting with 
oscillatory blobs in isolated spots of the convection layer at a relatively low Rayleigh 
number Ri. As R increases, the oscillatory cells become more numerous. Not until a 
Rayleigh number of at least twice Ri has been reached does every convection cell 
participate in the oscillations. This latter Rayleigh number corresponds roughly to the 
onset of oscillations for periodic bimodal cells with average wavenumbers. 

Because of their small basin of attraction in the phase space of the problem, spatially 
periodic steady and oscillatory bimodal cells are realized experimentally only under 
special conditions and usually more randomly organized patterns are observed. 
Nevertheless the regular solutions obtained in this paper can be regarded as 
representative examples in their respective Rayleigh- and Prandtl-number regimes 
since they exhibit typical features in their most simple form such as the interaction of 
steady and fluctuating components of motion. By extending the present analysis to 
higher Rayleigh numbers or by measuring in more detail experimentally realized 
spatially periodic convection it should also be possible to reach an even better 
quantitative comparison between theory and observations than has been obtained so 
far. 

The research reported in this paper has been supported by the Atmospheric Sciences 
Section of the US National Science Foundation and by a NATO travel grant. 
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